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ABSTRACT
Remarkable progress has been achieved for salient object de-
tection based on deep learning. However, most of the pre-
vious works have the issues of how to extract more effective
information from scale-varying data and how to improve the
boundary quality. In this paper, we propose the multi-scale
graph convolutional interaction network (MGCINet), which
consists of the feature interaction module (FIM), the feature
aggregation module (FAM), and the residual refinement mod-
ule (RRM). FIMs fuse interactive features from neighboring
scales. Based on two-layers graph convolutional network,
FAMs aggregate scale-specific information by graph nodes
interaction. RRMs optimize the coarse saliency maps with
blurred boundaries by U-net residual blocks. In addition, we
propose multi-scale weighted structural loss to assign differ-
ent weights to pixels while focusing on image structure at var-
ious scales. Experiments show that our method outperforms
the state-of-the-arts on five benchmark datasets under differ-
ent evaluation metrics.

Index Terms— Salient object detection, graph convolu-
tional network, multi-scale interaction

1. INTRODUCTION

Salient object detection (SOD) aims to distinguish the most
visually obvious regions. It has been widely used in com-
puter vision field with the development of deep learning,
such as visual tracking [1], semantic segmentation [2], non-
photorealistic rendering [3] and so on.

Benefiting from the powerful feature extraction capability
of convolutional neural networks (CNN), traditional salient
detection methods based on hand-crafted features [4, 5] are
gradually being surpassed. Recently, most of the models have
been implemented by fusing multi-scale features extracted
by CNN. For example, Wang et al. [6] proposed a progres-
sive feature polishing network that polishes multi-scale fea-
tures in parallel by simple structures in multiple layers. Pang
et al. [7] proposed a multi-scale interactive network with
the transformation-interaction-fusion strategy to better extract
multi-scale features. However, those previous works still face
a key issue of how to extract and aggregate more effective
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information from scale-varying data. Besides, another issue
is that most existing models focus more on region accuracy
rather than boundary quality, which may fail to yield the clear
and accurate boundary segmentation of salient objects.

In this paper, we propose multi-scale graph convolutional
interaction network (MGCINet) for higher-quality salient ob-
ject detection. For the first issue, we first utilize the feature
interaction module to perform fusion of interactive features
from neighboring scales to obtain initial feature maps. Then
we further propose the feature aggregation module consist-
ing of two-layers graph convolutional network (GCN) to ag-
gregate scale-specific information by graph nodes interaction.
The module can expand the receptive field and aggregate the
features of the neighboring nodes through the message propa-
gation mechanism. For the second issue, we design the resid-
ual refinement module based on U-net structure to optimize
the coarse saliency maps with blurred boundaries by learn-
ing the residuals between the saliency predictions and the
ground truth. In addition, the traditional binary cross entropy
loss treats pixels equally and ignores the overall image struc-
ture in most SOD models. Thus, we reconstruct the multi-
scale weighted structural loss to emphasize multi-scale im-
age structure and assign distinct weights to pixels, which can
guide the network to focus on relatively more local details.

Our contributions can be summarized as follows:
• We propose a novel MGCINet to more precisely ex-

tract multi-scale interactive features while performing
higher-accuracy boundary segmentation.

• We construct the feature aggregation module based on
two-layers GCN, which can effectively aggregate scale-
specific features through graph nodes interaction.

• We design the residual refinement module with U-net
residual blocks to refine fuzzy boundaries in the coarse
saliency maps.

• We propose the multi-scale weighted structural loss to
concentrate on local details by treating pixels unequally
and emphasizing image structure at various scales.

2. METHOD

In this paper, we propose a multi-scale graph convolutional
interaction network (MGCINet) for salient object detection,
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Fig. 1. The overall architecture of the proposed MGCINet. (a) shows the main network, which consists of FIMs({FIM i}4i=0)
for feature extraction, FAMs({FAM i}4i=0) for feature aggregation, and RRMs({RRM i}4i=0) for optimization. (b) shows the
network structure of FIM and (c) shows the network structure of RRM.

and the overall network structure is shown in Fig.1(a). The
network mainly consists of FIMs, FAMs and RRMs. Besides,
we reconstruct the multi-scale weighted structural loss to su-
pervise the training stage.

2.1. Feature Interaction Module

Inspired by MINet [7], the network structure of the feature
interaction module (FIM) is shown in Fig.1(b). FIMs take
features from neighboring scales as input and perform con-
vergent of features interaction. This process can utilize the
convolutional features at various scales to produce the initial
feature maps. Then the feature maps are fed into FAMs for
graph nodes interaction to obtain scale-specific information.

2.2. Feature Aggregation Module

The feature aggregation module (FAM) mainly consists of
two-layers graph convolutional network (GCN), and the net-
work structure is shown in Fig.2. FAMs performs feature ag-
gregation at scale-specific with GCN by graph nodes inter-
action. GCN is a form of Laplace smoothing, which cannot
be too deep to perform excessive smoothing, so we construct
a two-layers GCN. Here, we require a graph model, i.e., the
feature matrix of the nodes and the adjacency matrix that rep-
resents the relationship between the nodes. The image grid
data obtained by FIMs needs to be expanded into graph struc-
ture data. The graph structure data can be represented as a
binary group G(V,E), V represents the set of nodes of the
graph and is a |N | ∗ S feature matrix, |N | is the number of
nodes of the graph and S is the dimension of the node feature
vector. E is the set of edges of the graph.

Feature matrix initialization. We consider the pixels as
nodes. The nodes feature matrix is initialized using feature

Fig. 2. Illustration of feature aggregate module(FAM) con-
sisting of two-layers graph convolutional network.

maps from the FIMs, and the specific values are the features
extracted on the local receptive field. The receptive field is the
maximum range of node information received by the current
node. As an example, suppose that each node is connected to
its nearest L nodes, and the connections, i.e., node features,
can be passed through the edges of the graph neural network.
When L equals 4, for a 32×32 image, the receptive field size
of the two-layers GCN is 5×32×32, which is five times larger
than that of the CNN. Therefore, compared with the convo-
lutional layers of the traditional CNN, the two-layers GCN
expands the receptive field and can aggregate the features be-
tween neighboring nodes more effectively.

Adjacency matrix initialization. In the graph model, the
edges are represented by the adjacency matrix. Considering
the influence of distance on the correlation between nodes,
the model utilizes the Gaussian kernel function to weight the
adjacency matrix, i.e., the edges between the current node
and neighboring nodes at different distances have various
weights. The adjacency matrix after weighting by Gaussian
kernel function can reflect the connection weight relationship
between nodes more effectively, which is more conducive to
feature transfer and feature aggregation.

The initialized feature matrix and adjacency matrix are
fed into the two-layers GCN for graph convolution calcula-
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Table 1. Quantitative comparisons with different methods on 5 datasets with MAE (smaller is better), max/mean F-measure
score (larger is better). The best results are shown in red.

DUTS-TE ECSSD HKU-IS DUT-OMRON PASCAL-SMethods MAE max F mean F MAE max F mean F MAE max F mean F MAE max F mean F MAE max F mean F
Amulet17 0.062 0.832 0.738 0.057 0.922 0.881 0.047 0.909 0.863 0.072 0.791 0.699 0.095 0.839 0.870
NLDF17 0.055 0.830 0.759 0.051 0.915 0.886 0.041 0.908 0.871 0.071 0.759 0.694 0.083 0.840 0.792
DSS17 0.050 0.858 0.757 0.051 0.928 0.889 0.043 0.915 0.867 0.065 0.781 0.692 0.081 0.859 0.796
BMPM18 0.049 0.850 0.768 0.044 0.928 0.894 0.039 0.920 0.875 0.063 0.775 0.693 0.074 0.862 0.770
PiCANet18 0.054 0.851 0.749 0.046 0.931 0.885 0.042 0.922 0.870 0.068 0.794 0.710 0.077 0.871 0.804
PAGR18 0.055 0.854 0.784 0.061 0.927 0.894 0.047 0.919 0.887 0.071 0.771 0.711 0.093 0.858 0.808
RAS18 0.059 0.831 0.751 0.056 0.921 0.889 0.045 0.913 0.871 0.062 0.787 0.713 0.104 0.838 0.787
PAGE19 0.052 0.838 0.777 0.042 0.931 0.906 0.036 0.920 0.884 0.062 0.792 0.736 0.078 0.859 0.817
HRS19 0.051 0.843 0.793 0.054 0.920 0.902 0.042 0.913 0.892 0.066 0.762 0.708 0.090 0.852 0.809
AFNet19 0.046 0.863 0.793 0.042 0.935 0.908 0.036 0.925 0.889 0.057 0.797 0.739 0.071 0.871 0.828
MLMSNet19 0.049 0.852 0.745 0.045 0.928 0.868 0.039 0.920 0.871 0.064 0.774 0.692 0.075 0.864 0.771
CPD19 0.043 0.864 0.813 0.040 0.936 0.914 0.033 0.924 0.896 0.057 0.794 0.745 0.074 0.873 0.832
PoolNet19 0.042 0.876 0.799 0.044 0.937 0.910 0.033 0.931 0.894 0.056 0.806 0.739 0.074 0.876 0.817
EGNet19 0.043 0.877 0.800 0.041 0.941 0.913 0.034 0.929 0.893 0.056 0.809 0.744 0.076 0.863 0.821
CLASS20 0.039 - 0.833 0.038 - 0.917 0.031 - 0.909 0.057 - 0.749 0.062 - 0.838
Gatenet20 0.045 0.870 0.783 0.041 0.941 0.896 0.036 0.929 0.889 0.061 0.794 0.723 0.071 0.880 0.808
CAGNet-V20 0.044 0.851 0.823 0.042 0.930 0.914 0.033 0.905 0.906 0.057 0.782 0.744 0.079 0.859 0.828
DFNet-V20 0.045 0.852 0.824 0.040 0.933 0.919 0.033 0.921 0.906 0.057 0.784 0.751 0.075 0.837 0.803
PFPN20 0.042 0.868 0.836 0.040 0.938 0.915 0.035 0.928 0.902 0.063 0.777 0.753 0.071 0.891 0.866
MINet20 0.039 0.877 0.822 0.038 0.942 0.921 0.031 0.931 0.904 0.056 0.793 0.743 0.064 0.868 0.828
MGCINet(Ours) 0.038 0.883 0.838 0.035 0.945 0.925 0.029 0.934 0.911 0.055 0.801 0.754 0.061 0.879 0.846

Fig. 3. Precision-Recall curves on five saliency datasets. The area below the curve indicates the model performance (lager is
better). The curves show that ours (red lines) exhibit the most excellent performance.

tion. The updated feature matrix is converted into image fea-
ture maps and fed into the residual refinement module for op-
timization.

2.3. Residual Refinement Module

The residual refinement module (RRM) adopts a residual
encoder-decoder structure, as shown in Fig.1(c). The coarse
saliency maps obtained by FAMs suffer from blurred bound-
ary segmentation. Therefore, we design the RRMs to opti-
mize the boundary defects. The RRM is designed as a U-net
residual block, which improves the coarse saliency maps by
learning the residuals between the saliency predictions and
the ground truth. The saliency maps after RRMs processing
can acquire clearer boundaries based on refined region.

Next, every RRM is followed by a fully connected layer,
which consists of a convolutional layer, a batch normalization
layer and a ReLU layer. The saliency maps obtained by RRM
are integrated by the fully connected layer and fed into the
shallower layer.

2.4. Multi-scale Weighted Structural Loss

Our training loss is defined as the summation over all outputs:
L =

∑K
k=1 αkl

k. Where lk is the loss of the k-th side out-

put, K denotes the total number of the outputs and αk is the
weight of each loss. Our multi-scale weighted structural loss
is defined as:

lk = lkwBCE + lkwIoU + lkwSSIM (1)

where, lkwBCE ,lkwIoU ,and lkwSSIM denote the weighted binary
cross entropy loss, the weighted intersection over union loss
and the weighted structural similarity loss, respectively.

The BCE loss and the IoU loss treat pixels separately and
equally during the calculation, thus ignoring the overall im-
age structure. The SSIM loss doesn’t take into account the
dramatic changes in the mean and variance of the images.
Therefore, the model reconstruct three weighted loss func-
tions as multi-scale weighted structural loss to supervise the
training process. It can assign distinct weights to pixels while
focusing on the overall image structure at various scales.

3. EXPERIMENT

3.1. Implementation details

In this section, we will introduce some experimental details,
including the datasets employed by the model, the evaluation
metrics, and the training details.
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Table 2. Ablation analysis on PASCAL-S and DUTS-TE
datasets. The better results are shown in bold. The best re-
sults are shown in red.

PASCAL-S DUTS-TESettings MAE max F mean F MAE max F mean F
Baseline 0.064 0.868 0.828 0.039 0.877 0.822
+FAMs 0.062 0.873 0.839 0.038 0.880 0.828
+RRMs 0.063 0.870 0.832 0.039 0.879 0.825
+FAMs+RRMs 0.062 0.875 0.841 0.038 0.881 0.830
+lwBCE 0.063 0.872 0.833 0.039 0.879 0.825
+lwIoU 0.063 0.871 0.831 0.039 0.878 0.823
+lwSSIM 0.063 0.869 0.830 0.039 0.877 0.824
+lwBCE+lwIoU 0.062 0.873 0.835 0.038 0.881 0.828
+lwBCE+lwSSIM 0.062 0.872 0.834 0.039 0.881 0.826
+lwBCE+lwIoU+lwSSIM 0.061 0.874 0.839 0.038 0.882 0.830
+FAMs+RRMs+lwBCE+lwIoU+lwSSIM 0.061 0.879 0.846 0.038 0.883 0.838

Datasets. We evaluate our model on five benchmark
datasets. ECSSD [5] contains 1000 images containing se-
mantic information but with complex structure. HKU-IS [8]
contains 4447 images, most of which contain multiple inde-
pendent salient objects or low-contrast objects close to image
boundaries. DUT-OMRON [9] is composed of 5168 images
with complex foreground structure. PASCAL-S [10] contains
of 850 images with cluttered backgrounds and complex fore-
grounds objects. DUTS [11] is the largest dataset for salient
object detection available, containing 10533 training images
(DUTS-TR) and 5019 test images (DUTS-TE).

Evaluation metrics. We utilize four evaluation metrics to
evaluate our model: mean absolute error (MAE), precision-
recall (PR) curve, maximum F-measure (max F), and mean
F-measure (mean F). Precision is the percentage of correctly
marked saliency pixels in the predicted saliency maps. Re-
call is the proportion of correctly labeled saliency pixels in
the ground truth. The threshold method is chosen to plot the
paired sequences of precision and recall into PR curves.

Training. In the training stage, we employ the DUTS-
TR as the training dataset. And data enhancement techniques
such as random horizontal flipping and random rotation are
utilized to avoid over-fitting problems. To ensure the conver-
gence of the model, the network is trained on NVIDIA TITAN
Xp GPU with 60 epochs at batch size 4. The backbone net-
work in the base model is initialized using the VGG16 [12]
model pre-trained on the ImageNet dataset. The remaining
parameters are initialized by default using PyTorch 1.5. The
model utilizes stochastic gradient descent (SGD) as the opti-
mizer. The weight decay is set to 5e-4, the initial learning rate
is 1e-3, and the momentum is set to 0.9. The input image size
is 320 × 320.

3.2. Comparison

To verify the validity of the model, we conduct comparison
experiments with the state-of-the-art SOD methods [7, 6, 13,
14, 15, 16, 17, 18, 19, 20, 21]. To be fair, the comparisons
are made with the salient detection results provided by the
authors or by running their publicly available models.

Quantitative comparison. Table 1 shows the detailed ex-
perimental results for the three metrics on the five benchmark

Fig. 4. Visualization comparison of different methods. Obvi-
ously, our method generates superior saliency maps.

datasets. As shown, our method significantly outperforms
the existing state-of-the-arts. Although some metrics of our
model are barely satisfactory on the PASCAL-S and DUT-
OMRON datasets, our MAE values on these two datasets are
outstanding. In addition, Fig.3 represents the PR curves on
the five datasets, and it can be seen that our model results
achieve excellent performance on all of them.

Visualization comparison. Some representative exam-
ples of experimental results comparing with other methods
are shown in Fig.4. The examples show the contrast of the
saliency maps under different scenarios. From the compari-
son, we can see that our proposed method can acquire more
complete and detailed saliency maps with clearer boundaries.

3.3. Ablation Study

To illustrate the effectiveness of each module, we perform ab-
lation experiments on the basis of baseline, as shown in Ta-
ble 2. The ablation study is mainly compared on the datasets
DUTS-TE and PASCAL-S. Baseline represents the FIMs in-
spired by MINet [7].

At first, we individually test the validity of FAMs and
RRMs based on baseline. It can be seen that both mod-
ules show superior performance compared to baseline. Next,
for the combination of the two modules, the performance is
further improved. Moreover, we likewise evaluate the multi-
scale weighted structural loss on baseline. As shown, the
combination of the three weighted loss functions exhibits
the optimal results. Finally, we test the overall efficiency of
FAMs and RRMs, as well as multi-scale weighted structural
loss, and obviously, our proposed method shows the most
excellent performance, validating the validity of the model.

4. CONCLUSION

In this paper, we propose a multi-scale graph convolutional
interaction network for salient object detection. Our method
can effectively aggregate information from scale-varying data
by neighboring scales interaction and graph nodes interaction,
while improving the boundary quality of the salient objects.
Experiments show that our method significantly outperforms
the state-of-the-arts on the widely used benchmark datasets.
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